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The influence of the change with time of friction power on thermal stresses in a friction
element of a brake system is investigated. For this purpose, a list of ten different temporal
profiles of specific friction power is used, which has been experimentally established for a
single braking process. The corresponding profiles of transient temperature fields in the
considered element are applied as input parameters to find quasi-static thermal stresses.
Numerical analysis concerned with spatio-temporal distributions of the stresses and their
evolutions on the heated surface is presented.
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1. Introduction

One of the efficient and quick methods to preliminary estimate temperature and thermal stresses
in a designed friction pair of a brake system is usage of analytical models. Generally, there are
one-dimensional thermal problems of friction for bodies with canonical shape (i.e. semi-space,
strip, circular disc), heated on its working surface by the heat flux with intensity proportional
to the specific power of friction (Fazekas, 1953; Carslaw and Jaeger, 1959; Newcomb and Spurr,
1967). The last mentioned is defined as a product of the friction coefficient, contact pressure
and relative sliding speed between the pad and the brake rotor (Blok, 1955; Ling, 1973). Expe-
rimental research shows that, in the real braking processes, the friction momentum (and hence
the force of friction) vary with time, and the nature of this change depends on thermophysi-
cal properties of materials of the friction pair elements, working conditions and construction
of the brake (Chichinadze et al., 1979; Balakin and Sergienko, 1999). As a result, the power
of friction may have a complicated time profile. Most exact analytical solutions to the thermal
problem of friction were obtained for constant or linearly decreasing with time specific power
of friction (Yevtushenko and Kuciej, 2012; Kuciej, 2012; Jewtuszenko et al., 2015). Those solu-
tions describe non-stationary fields of temperature in friction elements during braking with an
invariable friction force and constant velocity or constant retardation. Distributions of thermal
stresses initiated by such temperatures in a semi-space were investigated by Evtushenko and
Kutsei (2006), and in a strip applied on the foundation analyzed by Yevtushenko et al. (2011),
Yevtushenko and Kuciej (2010).

The list of different temporal profiles of the specific friction power, established by means of
experimental research of frictional heating during single braking, was presented in the mono-
graph by Chichinadze (1967). Exact, analytical solutions to boundary-value problems of heat
conduction for a semi-space, heated on its surface by the frictional heat flux with intensity pro-
portional to the specific friction power, placed on the above-mentioned list, were obtained in the
articles by Topczewska (2017a) and Yevtushenko et al. (2017a).
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The aim of this paper is to investigate the influence of time profiles of the specific friction
power on distributions of thermal stresses generated due to frictional heating in a friction element
during single braking. Some results of the investigations were presented at the 9th International
Conference Balttrib’2017 (Yevtushenko et al., 2017b).

2. Temperature

Temporal profiles of the specific friction power during single braking have the following forms
(Chichinadze, 1967)

qi(t) = q0q
∗

i (t) q0 =
w0
ts

0 ¬ t ¬ ts i = 1, 2, . . . , 10 (2.1)

where ts is the braking time, q0 and w0 are nominal values of the specific friction power and
friction work, respectively

q∗1(t) = 2(1− t∗) q∗2(t) = 2t
∗ q∗3(t) = 1.5

√
1− t∗

q∗4(t) = 1.5
√
t∗ q∗5(t) = 3(1− t∗)2 q∗6(t) = 3t

∗2

q∗7(t) = 6t
∗(1− t∗) q∗8(t) = 1.2(1 − t∗)(1 + 2t∗)

q∗9(t) = 1.2t
∗(3− 2t∗) q∗10(t) = 6

√
t∗(1−

√
t∗) t∗ =

t

ts

(2.2)

where

w0 =

ts
∫

0

qi(t) dt i = 1, 2, . . . , 10 (2.3)

is constant for all cases, at the end of braking t = ts.

Fig. 1. Scheme of the problem

Temperature fields Ti(z, t), z  0, 0 ¬ t ¬ ts, i = 1, 2, . . . , 10 in a friction element (pad,
disc, etc.) caused by heating its working surface (Fig. 1) by the heat flux with intensities qi(t),
i = 1, 2, . . . , 10 (2.1)-(2.3) are found from exact solutions to the proper thermal problem of
friction for a semi-space z  0 in dimensionless forms (Topczewska, 2017a; Yevtushenko et al.,
2017a)
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T ∗1 (ζ, τ) =
4

3

√
ττ∗
{[ 3

τ∗
− 2(1 + Z2)

]

ierfcZ + Z erfcZ
}

T ∗2 (ζ, τ) =
4

3

√
ττ∗[2(1 + Z2) ierfcZ − Z erfcZ]

T ∗3 (ζ, τ) = 3
√
τ ierfcZ − 1

2

√
ττ∗[2(1 + Z2) ierfcZ − Z erfcZ]

− 1
40

√
ττ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]

− 1
560

√
ττ∗3[(48 + 174Z2 + 80Z4 + 8Z6) ierfcZ − Z(57 + 36Z2 + 4Z4) erfcZ]

T ∗4 (ζ, τ) =
3

4

√
πτsτ

∗[ erfcZ − 2Z ierfcZ]

T ∗5 (ζ, τ) = 2
√
τ{3 ierfcZ − 2τ∗[2(1 + Z2) ierfcZ − Z erfcZ]

+
1

5
τ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗6 (ζ, τ) =
2

5

√
ττ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]

T ∗7 (ζ, τ) = 4
√
ττ∗{[2(1 + Z2) ierfcZ − Z erfcZ]

− 1
5
τ∗[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗8 (ζ, τ) =
4

5

√
τ{3 ierfcZ + τ∗[2(1 + Z2) ierfcZ − Z erfcZ]

− 2
5
τ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗9 (ζ, τ) =
4

5

√
ττ∗{3[2(1 + Z2) ierfcZ − Z erfcZ]

− 2
5
τ∗[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T10
∗(ζ, τ) = τ∗{3√πτs( erfcZ − 2Z ierfcZ)− 4

√
τ [2(1 + Z2) ierfcZ − Z erfcZ]}

(2.4)

where the function erf (x) is error function, erfc (x) = 1 − erf (x), ierfc (x) = exp(−x2)/√π −
x erfc (x), and the dimensionless parameters are determined by the following relations

ζ =
z

a
τ =
kt

a2
τs =

kts
a2

τ∗ =
τ

τs

Z =
ζ

2
√
τ

T0 =
q0a

K
T ∗i =

Ti − Ta
T0

(2.5)

and a =
√
3kts – effective depth of heat penetration (Chichinadze et al., 1979), K – thermal

conductivity [W/(Km)]; k – thermal diffusivity [m2/s]; Ta – ambient temperature [K].

3. Thermal stresses

Thermal stresses corresponding to the fields of temperature T ∗i (ζ, τ), Eqs. (2.4) and (2.5), are
found based on the model of thermal bending of a thick plate with unfixed ends. In accordance
with this model, σi,x(z, t) = σi,y(z, t) ≡ σi(z, t), σi,z(z, t) = 0, where the transverse normal
component of the stress tensor σi (i = 1, 2, . . . , 10) (Noda et al., 2000)

σi(z, t) = σ0σ
∗

i (ζ, τ) σ0 =
αtET0
1− ν 0 ¬ z ¬ a 0 ¬ t ¬ ts (3.1)
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where the material properties are E – Young’s modulus [MPa], αt – coefficient of linear thermal
expansion [K−1], ν – Poisson’s ratio

σ∗i (ζ, τ) = ε
∗

i (ζ, τ)− T ∗i (ζ, τ) 0 ¬ ζ ¬ 1 0 ¬ τ ¬ τs
ε∗i (ζ, τ) = (4− 6ζ)Ni(τ) + 6(2ζ − 1)Mi(τ)

(3.2)

and

Ni(τ) =

1
∫

0

T ∗i (ζ, τ) dζ Mi(τ) =

1
∫

0

ζT ∗i (ζ, τ) dζ (3.3)

Substituting the dimensionless temperatures T ∗i (ζ, τ), Eq. (2.4) to equations (3.3), the follo-
wing are determined

N1(τ) =
8

3
ττ∗
[( 3

τ∗
− 2
)

I0(τ)− 2I2(τ) + J1(τ)
]

M1(τ) =
16

3
τ
√
ττ∗
[( 3

τ∗
− 2
)

I1(τ)− 2I3(τ) + J2(τ)
]

N2(τ) =
8

3
ττ∗{2[I0(τ) + I2(τ)]− J1(τ)}

M2(τ) =
16

3
τ
√
ττ∗{2[I1(τ) + I3(τ)]− J2(τ)}

N3(τ) = 6τI0(τ)− ττ∗{2[I0(τ) + I2(τ)]− J1(τ)}

− 1
20
ττ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

− 1
280
ττ∗3[48I0(τ) + 174I2(τ) + 80I4(τ) + 8I6(τ)− 57J1(τ)− 36J3(τ)− 4J5(τ)]

M3(τ) = 12τ
√
τI1(τ)− 2τ

√
ττ∗{2[I1(τ) + I3(τ)]− J2(τ)}

− 1
10
τ
√
ττ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

− 1
140
τ
√
ττ∗3[48I1(τ) + 174I3(τ) + 80I5(τ) + 8I7(τ)− 57J2(τ)− 36J4(τ)− 4J6(τ)]

N4(τ) =
3

2

√
πττsτ

∗[J0(τ)− 2I1(τ)] M4(τ) = 3τ
√
πτsτ

∗[J1(τ)− 2I2(τ)]

N5(τ) = 4τ
{

3I0(τ)− 2τ∗[2I0(τ) + 2I2(τ)− J1(τ)]

+
1

5
τ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

}

M5(τ) = 8τ
√
τ
{

3I1(τ)− 2τ∗[2I1(τ) + 2I3(τ)− J2(τ)]

+
1

5
τ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

}

N6(τ) =
4

5
ττ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

M6(τ) =
8

5
τ
√
ττ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

N7(τ) = 8ττ
∗{2I0(τ) + 2I2(τ)− J1(τ)

− 0.2τ∗[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}
M7(τ) = 16τ

√
ττ∗{2I1(τ) + 2I3(τ)− J2(τ)

− 1
5
τ∗[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

(3.4)
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N8(τ) =
8

5
τ{3I0(τ) + τ∗[2I0(τ) + 2I2(τ)− J1(τ)]

− 2
5
τ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}

M8(τ) =
16

5
τ
√
τ{3I1(τ) + τ∗[2I1(τ) + 2I3(τ)− J2(τ)]

− 2
5
τ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

N9(τ) =
8

5
ττ∗{3[2I0(τ) + 2I2(τ)− J1(τ)]

− 2
5
τ∗[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}

M9(τ) =
1

5
τ
√
ττ∗{3[2I1(τ) + 2I3(τ)− J2(τ)]

− 2
5
τ∗[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

N10(τ) = 2
√
ττ∗
{

3
√
πτs[J0(τ)− 2I1(τ)]− 8

√
τ
[

I0(τ) + I2(τ)−
1

2
J1(τ)

]}

M10(τ) = 4ττ
∗

{

3
√
πτs[J1(τ)− 2I2(τ)]− 8

√
τ
[

I1(τ) + I3(τ)−
1

2
J2(τ)

]}

where

Ik(τ) =

X
∫

0

Zk ierfcZ dZ =
1√
π
Lk(τ)− Jk+1(τ) k = 0, 1, . . . , 7

Lk(τ) =

X
∫

0

Zke−Z
2

dZ Jk(τ) =

X
∫

0

Zk erfcZ dZ X =
1

2
√
τ

(3.5)

and the variable Z has the form of Eq. (2.5).
Using the recursive formulas (Prudnikov et al., 1986, 1998), k = 2, 3, . . .

Lk(τ) =
1

2
[(k − 1)Lk−2(τ)−Xk−1e−X

2

]

Jk(τ) =
1

k + 1

[1

2
k(k − 1)Jk−2(τ) +

(

X2 − 1
2
k
)

Xk−1 erfcX − 1√
π
Xke−X

2
]

(3.6)

and taking into account that

L0(τ) =
1

2

√
π(1− erfcX) L1(τ) =

1

2
(1− e−X2)

J0(τ) =
1√
π
− ierfcX J1(τ) =

1

4
erfX − 1

2
X ierfcX

(3.7)

integrals (3.5)2 are computed as

L2(τ) =
1

4

√
π erfX − 1

2
Xe−X

2

L3(τ) =
1

2
[1− (1 +X2)e−X2 ]

L4(τ) = 0.375
√
π erfX − 1

2
X
(

X2 +
3

2
)e−X

2

L5(τ) = 1−
(1

2
X4 +X2 + 1

)

e−X
2

L6(τ) = 0.9375
√
π erfX −X(0.5X4 + 1.25X2 + 1.875)e−X2

L7(τ) = 3−
(1

2
X6 +

3

2
X4 + 3X2 + 3

)

e−X
2

(3.8)
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and

J2(τ) =
1

3

{

X3 erfcX +
1√
π
[1− (X2 + 1)e−X2 ]

}

J3(τ) =
1

4

[

X4 erfcX +
3

4
erfX − 1√

π
X
(

X2 +
3

2

)

e−x
2
)]

J4(τ) =
1

5

{

X5 erfcX +
1√
π
[2− (X4 + 2X2 + 2)e−X2 ]

}

J5(τ) =
1

6

[

X6 erfcX + 1.875 erfX − 1√
π
X(X4 + 2.5X2 + 3.75)e−X

2
]

J6(τ) =
1

7

{

X7 erfcX +
1√
π
[6− (X6 + 3X4 + 6X2 + 6)e−X2 ]

}

J7(τ) =
1

8

[

X8 erfcX + 6.5625 erfX − 1√
π
X(X6 + 3.5X4 + 8.75X2 + 13.125)e−X

2
]

J8(τ) =
1

9

{

X9 erfcX +
1√
π
[24− (X8 + 4X6 + 12X4 + 24X2 + 24)e−X2 ]

}

(3.9)

With account of relations (3.7)-(3.9), in the right side of equation (3.5)1, the following expressions
are obtained

I0(τ) =
1

2
√
π
Xe−X

2

+
1

4
erfX − 1

2
X2 erfcX

I1(τ) =
1

6

{ 1√
π
[1 + (2X2 − 1)e−X2 ]− 2X3 erfcX

}

I2(τ) =
1

8

[

X(2X2 − 1)e−X2
√
π +
1

2
erfX − 2X4 erfcX

]

I3(τ) =
1

5

{ 1

2
√
π
[1 + (2X4 −X2 − 1)e−X2 ]−X5 erfcX

I4(τ) =
1

6

[ 1

4
√
π
X(4X4 − 2X2 − 3)e−X2 + 0.375 erfX −X6 erfcX

]

I5(τ) =
1

7

{ 1√
π

[

1 +
(

X6 − 1
2
X4 −X2 − 1

)

e−X
2
]

−X7 erfcX
}

I6(τ) =
1

8

{ 1√
π
X(X6 − 0.5X4 − 1.25X2 − 1.875)e−X2 + 0.9375 erfX −X8 erfcX

}

I7(τ) =
1

9

{ 1√
π

[

3 +
(

X8 − 1
2
X6 − 3

2
X4 − 3X2 − 3

)

e−X
2
]

−X9 erfcX
}

(3.10)

Substituting functions Jk(τ), Ik(τ), k = 0, 1, . . . , 7, Eqs. (3.7)2, (3.9) and (3.10) to Eqs. (3.4),
temporal profiles of temperature Ni(τ) averaged over the plate thickness and the temperature
momentum Mi(τ), i = 1, 2, . . . , 10, Eqs. (3.3), and next, dimensionless stresses σ

∗

i (ζ, τ), Eqs.
(3.2), have been determined.
It should be noted that distributions of the thermal stresses corresponding to the profiles of

the specific friction power q∗i (t), i = 5, 7, 10, Eqs. (2.2), were studied in the article by Topczewska
(2017b), too.

4. Numerical analysis

Influence of the temporal profiles of the specific friction power q∗i (t), i = 1, 2, . . . , 10, Eqs.
(2.2) on the dimensionless temperature T ∗i (ζ, τ) (2.4) was detailed investigated in the article
by Yevtushenko et al. (2017a). Therefore, in this paper, the effect of this factor on the quasi-
-static normal thermal stresses σ∗i (ζ, τ), i = 1, 2, . . . , 10 Eqs. (3.1) and (3.2), initiated by the
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temperature, have been determined. Isolines of these stresses are shown in Figs. 2 and 3. The
presented data can be divided into two specific groups. The first one consists of the results
obtained for i=1,3,8 and i=5,7,10 (Topczewska, 2017b). These cases are characterized by the
fact that with the onset of the braking process, along with a rapid increase of temperature,
in the region 0 ¬ ζ ¬ 0.2 under the friction surface, compressive stresses (σ∗i < 0) appear.
Absolute values of the stresses in this zone decrease with time, achieving zero at the particular
time moment, then change the sign and become tensile stresses (σ∗i > 0). The time of change
of the stress sing (compressive into tensile) is strongly dependent on the time of achieving the
maximum temperature on the friction surface of the heated element. The faster temperature
reaches the maximum value, the earlier this transition occurs and the tensile stress achieves a
higher value on the outer surface at the moment of standstill. The second region 0.75 ¬ ζ ¬ 1
of the compressive stresses occurs adjacent to the unheated, bottom surface of the element.
Evolution of the stresses in this region is similar, as in the previous – at the initial stage

Fig. 2. Isolines of the dimensionless normal transverse stresses σ∗
i
, i = 1, 2, 3, 4

of braking the compressive stresses appear, then change their sign with approaching to the
stop moment. Between these zones of tensile stresses, there is a region of compressive stresses,
which rapidly increase at the initial stage of braking, achieving their maximum values after
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Fig. 3. Isolines of the dimensionless normal transverse stresses σ∗
i
, i = 5, 6, 7, 8, 9, 10
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a relatively short time. Subsequently, these stresses decrease with time, disappearing near the
moment of standstill. Values and evolutions of the stresses in the all above-mentioned regions
are interdependent. The higher values of tensile stresses on the surface occurs, the higher values
of the compressive stresses are achieved. The time of occurrence of the maximum tensile stresses
inside the friction element is almost equal to the time of appearance of the greatest values of
compressive stresses on its heated surface.

Stresses isolines σ∗i (ζ, τ), i = 2, 4, 6, 9, from the second group, reflect a monotonical increase
of the corresponding temperatures T ∗i (ζ, τ) during braking with set distance from the heated
surface ζ (Yevtushenko et al., 2017a). In contrast to the first group, in the considered regions
of the greatest concentration of compressive stresses, adjacent to the upper and lower edge of
the friction element, the maxima are located closer to the end of the braking process, and the
maximum absolute values on the friction surface ζ = 0 are achieved at the stop moment τ = τs.
In this second group, between the lines of zero stresses, which remain during the whole braking
process at depths ζ ≈ 0.2 and ζ ≈ 0.75, also the region of tensile stresses occurs. These stresses
monotonically increase with time, reaching the maximum value at the stop moment.

Fig. 4. Evolutions of the dimensionless normal transverse stresses σ∗
i
on the surface of friction ζ = 0:

(a) i = 1, 2, . . . , 6; (b) i = 7, 8, 9, 10

Changes of the dimensionless thermal stresses σ∗i (0, τ), i = 1, 2, . . . , 10 with time on the
friction surface of the element are presented in Fig. 4. As shown in the article by Yevtushenko et
al. (2017a), temporal profiles of the specific friction power q∗i (τ), i = 1, 2, . . . , 10 (2.1)-(2.3) can
be classified into one of three specific groups. The first group includes functions q∗i (t), i = 1, 3, 5,
which reach the maximum value at the initial moment of braking, and then monotonically
decrease to zero at the standstill moment. The corresponding stresses on the heated surface,
after start of the process are compressive, and their absolute values rapidly increase, reaching
the maximum values 0.2, 0.15 and 0.29 at moments 0.04τs, 0.05τs and 0.04τs for i = 1, 3, 5,
accordingly (Fig. 4a). Then, the compressive stresses on the heated surface disappear with time,
and at the moments 0.72τs (i = 1), 0.97τs (i = 3) and 0.53τs (i = 5) change the sign of stresses,
and the tensile stresses appear.

The second group contains the functions q∗i (t), i = 2, 4, 6 (2.1) and (2.2), which monotonically
increase from zero at the initial moment of the braking process to the maximum value at the stop
moment. In a similar way, the evolutions of the corresponding dimensionless temperatures T ∗i ,
i = 2, 4, 6 are calculated on the friction surface ζ = 0 from equations (2.4)2, (2.4)4 and (2.4)6,
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respectively. Dimensionless thermal stresses σ∗i , i = 2, 4, 6 on the heated surface are compressed
during the whole braking, and their absolute values monotonically increase with time from zero
at the start moment to the maximum values 0.13 (i = 2), 0.09 (i = 4), 0.22 (i = 6), at the
standstill (Fig. 4a).

The last one of the three highlighted groups consists of four time profiles of the specific
friction power q∗i (t), i = 7, 8, 9, 10, which have a local maximum within the time braking interval.
Profiles of these functions affect the evolution of the corresponding stresses. At the initial stage
of braking, the absolute values of compressive stresses decrease, reaching a local minimum −0.16
at τ = 0.4τs (i = 7), −0.13 at τ = 0.07τs (i = 8), −0.09 at τ = 0.56τs (i = 9) and −0.13 at
τ = 0.16τs (i = 10) (Fig. 4b). Stresses σ

∗

i , i = 7, 8, 10 at the moments τ = 0.88, τ = 0.82 and
τ = 0.8, accordingly, change the sign, and their highest values 0.05, 0.044 and 0.044 are achieved
at the stop moment. In the case i = 9, stresses on the friction surface of the element compress
the material during the whole braking process.

5. Conclusions

It is known that the sum of the intensities of heat fluxes generated due to friction on the contact
surface of the friction pair (which are directed along the normal to the inside of the friction
elements) are equal to the specific friction power (Ling, 1973). Changes of friction power with
time can be different, and their typical cases were classified in the monograph by Chichinadze
et al. (1967). Using this classification, in the articles by Topczewska (2017a) and Yevtushenko
et al. (2017a) it has been established that the temporal profile of the specific friction power
has crucial influence on the distribution of temperature in the pad and the brake disk, and the
maximum value of temperature on the contact surface of these elements. In this paper, based
on exact analytical solutions to the boundary-value problem of heat conduction for a semi-space
heated on its surface by the heat flux with intensity equal to the specific power of friction, the
exact solution of the boundary quasi-static problems of thermoelasticity has been received. This
allows one to conduct numerical analysis and to investigate the influence of the time profile of
friction power on the state of thermal stresses in a selected element of the friction pair. As a
result, it has been established that the values and distribution of the thermal stresses initiated
by frictional heating depends mainly on the temporal profile of a specific friction power. If the
friction power monotonically increases during braking (i = 2, 4, 6) or its maximum value is
reached near the moment of standstill (i = 9), on the friction surface of the element there occur
merely compressive normal stresses. However, when the maximum values of the friction power
and also temperature are achieved earlier during the braking process (i = 1, 3, 5, 7, 8, 10), then
due to relative cooling of the surface, before the standstill moment, the stresses change the sign
and tensile stresses appear. In the case of exceeding the ultimate strength of the friction material
by the value of this stress, initiation of the superficial thermal cracks may appear (Evtushenko
and Kutsei, 2006; Yevtushenko et al., 2011).

It has been established that the relationship between the maximum values of specific friction
power and the normal transverse stresses is directly proportional. However, the moment of
thermal stresses change of sign on the friction surface (transition from compressive to tensile
stresses) mainly depend on the time of achieving the maximum temperature. The most rational
modes of frictional heating from the “stresses” point of view corresponds the following temporal
profiles q∗i (t), i = 2, 4 and 9. For the same brake work, evolutions of the stresses corresponding
to these time profiles are the most uniform and the change of their sign does not occur. Their
extreme values are the lowest in comparison with other cases.
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